BAMLSS: Bayesian additive models for location, scale and shape (and beyond)

نویسندگان

  • Nikolaus Umlauf
  • Nadja Klein
  • Achim Zeileis
چکیده

Bayesian analysis provides a convenient setting for the estimation of complex generalized additive regression models (GAMs). Since computational power has tremendously increased in the past decade it is now possible to tackle complicated inferential problems, e.g., with Markov chain Monte Carlo simulation, on virtually any modern computer. This is one of the reasons why Bayesian methods have become increasingly popular, leading to a number of highly specialized and optimized estimation engines and with attention shifting from conditional mean models to probabilistic distributional models capturing location, scale, shape (and other aspects) of the response distribution. In order to embed many different approaches suggested in literature and software, a unified modeling architecture for distributional GAMs is established that exploits the general structure of these models and encompasses many di↵erent response distributions, estimation techniques (posterior mode or posterior mean), and model terms (fixed, random, smooth, spatial, . . . ). It is shown that within this framework implementing algorithms for complex regression problems, as well as the integration of already existing software, is relatively straightforward. The usefulness is emphasized with two complex and computationally demanding application case studies: a large daily precipitation climatology based on more than 1.2 million observations from more than 50 meteorological stations, as well as a Cox model for continuous time with space-time interactions on a data set with over five thousand “individuals”.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Discussion of ' Beyond mean regression '

Methodology for regression beyond the mean has been a goal of researchers for many years. This discussion provides some additional context for the important ideas in the present paper, by recounting some of the historical background to the GAMLSS approach and pointing to the power and appeal of fully probabilistic regression analysis in the setting of Bayesian nonparametrics.

متن کامل

Nonlife ratemaking and risk management with bayesian additive models for location, scale and shape

Generalized additive models for location, scale and shape define a flexible, semiparametric class of regression models for analyzing insurance data in which the exponential family assumption for the response is relaxed. This approach allows the actuary to include risk factors not only in the mean but also in other parameters governing the claiming behavior, like the degree of residual heterogen...

متن کامل

University of Groningen Model selection in continuous test norming with GAMLSS

To compute norms from reference group test scores, continuous norming is preferred over traditional norming. A suitable continuous norming approach for continuous data is the use of the Box–Cox Power Exponential model, which is found in the generalized additive models for location, scale, and shape. Applying the Box–Cox Power Exponential model for test norming requires model selection, but it i...

متن کامل

Flexible Bayesian additive joint models with an application to type 1 diabetes research.

The joint modeling of longitudinal and time-to-event data is an important tool of growing popularity to gain insights into the association between a biomarker and an event process. We develop a general framework of flexible additive joint models that allows the specification of a variety of effects, such as smooth nonlinear, time-varying and random effects, in the longitudinal and survival part...

متن کامل

Location Reparameterization and Default Priors for Statistical Analysis

This paper develops default priors for Bayesian analysis that reproduce familiar frequentist and Bayesian analyses for models that are exponential or location. For the vector parameter case there is an information adjustment that avoids the Bayesian marginalization paradoxes and properly targets the prior on the parameter of interest thus adjusting for any complicating nonlinearity the details ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2017